Fast quantum algorithms for numerical integrals and stochastic processes1
نویسنده
چکیده
We discuss quantum algorithms that calculate numerical integrals and descriptive statistics of stochastic processes. With either of two distinct a p proaches, one obtains an exponential speed increase in comparison to the fastest known classical deterministic algorithms and a quadratic speed increase in comparison to classical Monte Carlo (probabilistic) methods. We derive a simpler and slightly faster version of Grover's mean algorithm, demonstrate how to apply quantum counting to the problem, develop some variations of these algorithms, and show how both (apparently quite different) approaches can be understood from the same unified framework. Finally, we discuss how the exponential speed increase appears to (but does not) violate results obtained via the method of polynomials, from which it is known that a bounded-error quantum algorithm for computing a total function can be only polynomially more efficient than the fastest deterministic classical algorithm.
منابع مشابه
Quantum Algorithms
This thesis describes several new quantum algorithms. These include a polynomial time algorithm that uses a quantum fast Fourier transform to find eigenvalues and eigenvectors of a Hamiltonian operator, and that can be applied in cases (commonly found in ab initio physics and chemistry problems) for which all known classical algorithms require exponential time. Fast algorithms for simulating ma...
متن کاملFast quantum algorithms for numerical integrals and stochastic processes
We discuss quantum algorithms that calculate numerical integrals and descriptive statistics of stochastic processes. With either of two distinct approaches, one obtains an exponential speed increase in comparison to the fastest known classical deterministic algorithms and a quadratic speed increase in comparison to classical Monte Carlo (probabilistic) methods. We derive a simpler and slightly ...
متن کاملThe using of Haar wavelets for the expansion of fractional stochastic integrals
Abstract: In this paper, an efficient method based on Haar wavelets is proposed for solving fractional stochastic integrals with Hurst parameter. Properties of Haar wavelets are described. Also, the error analysis of the proposed method is investigated. Some numerical examples are provided to illustrate the computational efficiency and accuracy of the method.
متن کاملNumerical solution and simulation of random differential equations with Wiener and compound Poisson Processes
Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...
متن کاملOption pricing under the double stochastic volatility with double jump model
In this paper, we deal with the pricing of power options when the dynamics of the risky underling asset follows the double stochastic volatility with double jump model. We prove efficiency of our considered model by fast Fourier transform method, Monte Carlo simulation and numerical results using power call options i.e. Monte Carlo simulation and numerical results show that the fast Fourier tra...
متن کامل